chinesefreesexvideos高潮,欧美极品少妇性运交,久久久国产一区二区三区,99久久婷婷国产综合精品,成人国产一区二区三区

APP推廣合作
聯(lián)系“鳥哥筆記小喬”
互聯(lián)網(wǎng)運營數(shù)據(jù)分析必須掌握的10個經(jīng)典方法
2018-07-03 10:58:18


作者:宋星

來源:網(wǎng)站分析在中國(ID:chinawebanalytics)

本文為作者授權(quán)鳥哥筆記發(fā)布,轉(zhuǎn)載請聯(lián)系作者并注明出處。


眼花繚亂的東西很多,真正派上用場的,卻不見得是那些看起來炫酷的。很多方法樸實無華,卻解決大量的問題。


  下面十個方法都是我這么多年做互聯(lián)網(wǎng)運營分析時一定會用到的最經(jīng)典的方法。這些方法如果爛熟于心,其實互聯(lián)網(wǎng)運營分析的最核心部分也就掌握差不多了。真沒那么復(fù)雜。


  我們從第十個方法倒著講,重要性并無優(yōu)劣之分,但壓軸的,往往是最重要的。


方法十:Link Tag的流量標記


  Link tag標記流量源頭 ,絕對是所有方法中最為基本重要的一種。這種方法不僅僅適用于網(wǎng)站的流量來源,也同樣適用于app下載來源的監(jiān)測(但后者需要滿足一定的條件)。


  Link tag的意思,是在流量源頭的鏈出鏈接上(鏈出URL上)加上尾部參數(shù)。這些參數(shù)不僅不會影響鏈接的跳轉(zhuǎn),而且能夠標明這個鏈接所屬的流量源是什么(理論上能夠標明流量源的屬性數(shù)是無限的)。


  Link tag不能單獨起作用,必須要在網(wǎng)站分析工具或者app分析工具的配合下工作。


  Link tag是流量分析的基礎(chǔ),要嚴肅的分析流量,不僅僅是常規(guī)分析,還包括歸因分析(attribution analysis),都需要使用link tag的方法。



方法九:轉(zhuǎn)化漏斗


  分析轉(zhuǎn)化的基本模型是轉(zhuǎn)化漏斗(conversion funnel),這個大家都應(yīng)該很熟悉了。


  轉(zhuǎn)化漏斗最常見的是把最終的轉(zhuǎn)化設(shè)置為某種目的的實現(xiàn),最典型的就是實現(xiàn)銷售,所以大家很多時候把轉(zhuǎn)化和銷售是混為一談。但轉(zhuǎn)化漏斗的最終轉(zhuǎn)化也可以是其他任何目的的實現(xiàn),比如一次使用app的時間超過10分鐘(session duration >10minutes)。對于增長黑客而言,構(gòu)建漏斗是最為常見的工作。


  漏斗幫助我們解決兩方面的問題,第一、在一個過程中是否發(fā)生泄漏,如果有泄漏,我們能在漏斗中看到,并且能夠通過進一步的分析堵住這個泄漏點;第二、在一個過程中是否出現(xiàn)了其他不應(yīng)該出現(xiàn)的過程,造成轉(zhuǎn)化主進程受到損害。


  漏斗的構(gòu)建很簡單,無論web還是app,都是最好用的方法之一。但漏斗使用的奧秘則很豐富。而且漏斗方法還會和其他方法混合使用,樂趣無窮。我在互聯(lián)網(wǎng)數(shù)據(jù)運營的課程中也會具體講解。



方法八:微轉(zhuǎn)化


  人人都懂轉(zhuǎn)化漏斗,但不是所有人都關(guān)注微轉(zhuǎn)化。但是你想指望一個轉(zhuǎn)化漏斗不斷提升轉(zhuǎn)化率太困難了,而微轉(zhuǎn)化卻可以做到。轉(zhuǎn)化漏斗解決的是轉(zhuǎn)化過程中的大問題,但大問題總是有限的,這些問題搞定后,你還是需要對你的轉(zhuǎn)化進行持續(xù)優(yōu)化,這個時候必須要用到微轉(zhuǎn)化。


  微轉(zhuǎn)化是指在轉(zhuǎn)化必經(jīng)過程之外,但同樣會對轉(zhuǎn)化產(chǎn)生影響的各種元素。這些元素與用戶的互動,左右了用戶的感受,也直接或者間接的影響了用戶的決定。


  比如,商品的一些圖片展示,并不是轉(zhuǎn)化過程中必須要看的,但是它們的存在,是否會對用戶的購買決定產(chǎn)生影響?這些圖片就是微轉(zhuǎn)化元素。


  個人認為,研究微轉(zhuǎn)化比研究轉(zhuǎn)化更好玩。有一些案例,課堂上跟大家講。



方法七:合并同類項


  合并同類項是大家容易忽視的常用方法。我們往往非常重視細分,但有的時候我們卻需要了解更宏觀的表現(xiàn)。


  合并同類項就是這樣的方法。舉一個例子,我問你,一個電子商務(wù)網(wǎng)站,所有商品頁的整體表現(xiàn)如何?它們作為一個整體的bounce rate怎么樣,停留時間怎么樣,用戶滿意度怎么樣等等,你能夠回答嗎?


  如果我們查看每一個商品頁的表現(xiàn),然后再把所有一個一個頁面的數(shù)據(jù)加總起來作分析,就太麻煩了(根本無法實現(xiàn)分析)。這個時候,我們必須要合并同類項。


  如何合并?利用分析工具的過濾工具或者查找替換功能。不支持這樣功能的工具你可以考慮扔掉了,因為這根本不應(yīng)放在增長黑客的專業(yè)裝備箱中。


  合并同類項還有很多用途,比如你要了解web或者app一個版塊(頻道)的整體表現(xiàn),或者你要了解整個導(dǎo)航體系的使用情況,這都是必須使用的方法。



方法六:AB測試


  增長黑客不談AB測試是恥辱。


  通過數(shù)據(jù)優(yōu)化運營和產(chǎn)品的邏輯很簡單——看到問題,想個主意,做出原型,測試定型。


  比如,你發(fā)現(xiàn)轉(zhuǎn)化漏斗中間有一個漏洞,于是你想,一定是商品價格不對頭,讓大家不想買了。你看到了問題——漏斗,而且你也想出了主意——改變定價。


  但是這個主意靠不靠譜,可不是你想出來的,必須得讓真實的用戶用。于是你用AB測試,一部分的用戶還是看到老價格,另外一部分用戶看到新價格。若是你的主意真的管用,新價格就應(yīng)該有更好的轉(zhuǎn)化。若真如此,新的價格就被確定下來(定型),開始在新的轉(zhuǎn)化高度上運行,直到你又發(fā)現(xiàn)一個新的需要改進的問題。


  增長黑客的一個主要思想之一,是不要做一個大而全的東西,而是不斷做出能夠快速驗證的小而精的東西??焖衮炞C,如何驗證的?主要方法就是AB測試。


  今天的互聯(lián)網(wǎng)世界,由于流量紅利時代的結(jié)束,對于快速迭代的要求大大提升了,這也使我們更加在意測試的力量。


  在web上進行AB測試很簡單,在app上難度要高很多,但解決方法還是很多的。國外那些經(jīng)典app,那些賣錢游戲,幾乎天天都在AB測試。



方法五:熱圖及對比熱圖


  熱圖是一個大家都喜歡的功能,它是最直觀的記錄用戶與產(chǎn)品界面交互的工具。不過真用起來,可能大家很少真正去深究吧!


  熱圖,對于web、app的分析,都非常重要!今天的熱圖相對于過去的熱圖,功能得到了極大的提升。


  在web端,過去一些解決不好的問題,比如只能看鏈接的被點擊情況,點擊位置錯位,對浮層部分點擊的標記,對鏈出鏈接的標記等等,現(xiàn)在已經(jīng)有好的工具能夠提供很多新的辦法去解決。在app端則分為兩種情況,內(nèi)容類的app,對于熱圖的需求較弱;但工具類的app對于熱圖的需求則很顯著。前者的screen中以并列內(nèi)容為主,且內(nèi)容動態(tài)變換,熱圖應(yīng)用價值不高;后者則特別需要通過熱圖反映用戶的使用習(xí)慣,并結(jié)合app內(nèi)其他的engagement的分析(in-app engagement)來優(yōu)化功能和布局設(shè)計,所以熱圖對它們很重要。


  要想熱圖用的好,一個很重要的點在于你幾乎不能單獨使用一個熱圖就想解決問題。我常常用集中對比熱圖的方法。


  其一,多種熱圖的對比分析,尤其是點擊熱圖(觸摸熱圖)、閱讀線熱圖、停屏熱圖的對比分析;


  其二,細分人群的熱圖對比分析,例如不同渠道、新老用戶、不同時段、AB測試的熱圖對比等等。


  其三,深度不同的互動,所反映的熱圖也是不同的。這種情況也值得利用熱圖對比功能。例如點擊熱圖與轉(zhuǎn)化熱圖的對比分析等。


  總之,分析很多用戶交互的時候,熱圖簡直是神器,只不過,熱圖真的比你看到的要更強大!



方法四:Event Tracking(事件追蹤)


  互聯(lián)網(wǎng)運營數(shù)據(jù)分析的一個很重要的基礎(chǔ)是網(wǎng)站分析。今天的app分析、流量分析、渠道分析,還有后面要講到的歸因分析等等,都是在網(wǎng)站分析的基礎(chǔ)之上發(fā)展起來的。


  但是,早期的網(wǎng)站分析有一個特點,就是對于用戶在頁面上互動行為的記錄,只能記錄下來一種,就是點擊http鏈接(點擊URL)。不過隨著技術(shù)的發(fā)展,頁面上不僅僅只有http鏈接,頁面上還有很多flash(現(xiàn)在flash都要被淘汰了)、JavaScript的互動鏈接、視頻播放、鏈接到其他的web或者app的鏈接等等,用戶點擊這些東西就都無法被老方法記錄下來了。


  不過,有問題就一定有方法,人們發(fā)明了event tracking來解決上面的問題。event tracking本質(zhì)上是對這些特殊互動的定制化監(jiān)測,而由于是定制化,所以反而有了更多附加的好處,即可以額外添加對于這個活動的更多的說明(以event tracking這個方法的附件屬性的方式)。結(jié)果,這個方法甚至有些反客為主,即使是一些http鏈接,很多分析老手也喜歡把它們加上event tracking(技術(shù)上完全可行),以獲得更多的額外監(jiān)測屬性說明。


  隨著app的出現(xiàn),由于app的特殊性(屏幕小,更強調(diào)在一個屏幕中完成互動),分析app的page(實際上應(yīng)該是app的screen)間跳轉(zhuǎn)的重要性完全不如web上的page之間的跳轉(zhuǎn),但分析app上的點擊行為的重要性則十分巨大,這就使我們分析in-app engagement的時候,必須大量依賴event,而相對較少使用screen。這就是說,在app端,event反而是主,page(更準確應(yīng)該是screen)反而是輔!


  這也是為什么,這個方法你必須要掌握的原因。



方法三:Cohort分析


  Cohort分析還沒有一個所有人都統(tǒng)一使用的翻譯。有的說是隊列分析,有的說是世代分析,有的說是隊列時間序列分析。大家可以參考維基百科:https://zh.wikipedia.org/wiki/%E9%98%9F%E5%88%97%E7%A0%94%E7%A9%B6,找找自己覺得合適的譯名。


  無論哪種叫法,cohort分析在有數(shù)據(jù)運營領(lǐng)域都變得十分重要。原因在于,隨著流量經(jīng)濟的退卻,精耕細作的互聯(lián)網(wǎng)運營特別需要仔細洞察留存情況。Cohort分析最大的價值也正在于此。Cohort分析通過對性質(zhì)完全一樣的可對比群體的留存情況的比較,來發(fā)現(xiàn)哪些因素影響短、中、長期的留存。


  Cohort分析受到歡迎的另一個原因是它用起來十分簡單,但卻十分直觀。相較于比較繁瑣的流失(churn)分析,RFM或者用戶聚類等,Cohort只用簡單的一個圖表,甚至連四則運算都不用,就直接描述了用戶在一段時間周期(甚至是整個LTV)的留存(或流失)變化情況。甚至,Cohort還能幫你做預(yù)測。


  我總覺得cohort分析是最能體現(xiàn)簡單即美的一個典型方法。



方法二:Attribution(歸因)


  歸因不是人人都聽說過,用好的更是寥寥無幾。 不過,考慮到人們購買某一樣?xùn)|西的決策,可能受到多種因素(數(shù)字營銷媒體)的影響,比如看到廣告了解到這個商品的存在,利用搜索,進一步了解這個商品,然后在social渠道上看到這個商品的公眾號等等。這些因素的綜合,讓一個人下定了決心購買。


  因此,很多時候,單一的廣告渠道并不是你打開客戶閘門的閥門,而是多種渠道共同作用的結(jié)果。


  如何了解數(shù)字營銷渠道之間的這種先后關(guān)系或者相互作用?如何設(shè)置合理的數(shù)字營銷渠道的策略以促進這種關(guān)系?在評價一個渠道的時候,如何將歸因考慮在內(nèi)從而能夠更客觀的衡量?這些都需要用到歸因。


  如果你是互聯(lián)網(wǎng)營銷的負責(zé)人,歸因分析是必不可少的分析方法。在我的課堂上,會特別多的篇幅講解這個方法。



方法一:細分


  嚴格說,細分不是一種方法,它是一切分析的本源。所以它當(dāng)之無愧要排名第一。


  我經(jīng)常的口頭禪是,無細分、毋寧死。沒有細分你做什么分析呀。


  細分有兩類,一類是一定條件下的區(qū)隔。如:在頁面中停留30秒以上的visit(session);或者只要北京地區(qū)的訪客等。其實就是過濾。另一類是維度(dimension)之間的交叉。如:北京地區(qū)的新訪問者。即分群(segmentation)。


  細分幾乎幫助我們解決所有問題。比如,我們前面講的構(gòu)建轉(zhuǎn)化漏斗,實際上就是把轉(zhuǎn)化過程按照步驟進行細分。流量渠道的分析和評估也需要大量用到細分的方法。


  維度之間的交叉是比較體現(xiàn)一個人分析水平的細分方法。比如,我的朋友孫維(卡車之家的數(shù)據(jù)負責(zé)人),他將用戶的反饋作為event tracking的屬性(放在了event action屬性中),提交給GA,然后在自定義的報告中,將用戶反饋和用戶的其他行為交叉起來,從而看到有某一類反饋的用戶,他們的行為軌跡是什么,從而推測發(fā)生了什么問題。


  分析跳出率時,我們也會把landing page和它的traffic source(流量源)進行交叉,以檢查高跳出率的表現(xiàn)是由著陸頁造成,還是由流量造成。這也是典型的維度交叉細分的應(yīng)用。


  無細分,毋寧死。



  好了,十個方法講完了。其實還有不少可以增補的。


文章推薦:


玩轉(zhuǎn)會員數(shù)據(jù)分析之入門篇:數(shù)據(jù)分析方法論

基礎(chǔ)的數(shù)據(jù)分析:2大分析模型和6種數(shù)據(jù)展現(xiàn)圖表

系統(tǒng)化數(shù)據(jù)分析:三步搭建基礎(chǔ)分析框架


運營那些事兒
分享到朋友圈
收藏
收藏
評分

綜合評分:

我的評分
Xinstall 15天會員特權(quán)
Xinstall是專業(yè)的數(shù)據(jù)分析服務(wù)商,幫企業(yè)追蹤渠道安裝來源、裂變拉新統(tǒng)計、廣告流量指導(dǎo)等,廣泛應(yīng)用于廣告效果統(tǒng)計、APP地推與CPS/CPA歸屬統(tǒng)計等方面。
20羽毛
立即兌換
一書一課30天會員體驗卡
領(lǐng)30天VIP會員,110+門職場大課,250+本精讀好書免費學(xué)!助你提升職場力!
20羽毛
立即兌換
順豐同城急送全國通用20元優(yōu)惠券
順豐同城急送是順豐推出的平均1小時送全城的即時快送服務(wù),專業(yè)安全,準時送達!
30羽毛
立即兌換
運營那些事兒
運營那些事兒
發(fā)表文章43451
確認要消耗 羽毛購買
互聯(lián)網(wǎng)運營數(shù)據(jù)分析必須掌握的10個經(jīng)典方法嗎?
考慮一下
很遺憾,羽毛不足
我知道了

我們致力于提供一個高質(zhì)量內(nèi)容的交流平臺。為落實國家互聯(lián)網(wǎng)信息辦公室“依法管網(wǎng)、依法辦網(wǎng)、依法上網(wǎng)”的要求,為完善跟帖評論自律管理,為了保護用戶創(chuàng)造的內(nèi)容、維護開放、真實、專業(yè)的平臺氛圍,我們團隊將依據(jù)本公約中的條款對注冊用戶和發(fā)布在本平臺的內(nèi)容進行管理。平臺鼓勵用戶創(chuàng)作、發(fā)布優(yōu)質(zhì)內(nèi)容,同時也將采取必要措施管理違法、侵權(quán)或有其他不良影響的網(wǎng)絡(luò)信息。


一、根據(jù)《網(wǎng)絡(luò)信息內(nèi)容生態(tài)治理規(guī)定》《中華人民共和國未成年人保護法》等法律法規(guī),對以下違法、不良信息或存在危害的行為進行處理。
1. 違反法律法規(guī)的信息,主要表現(xiàn)為:
    1)反對憲法所確定的基本原則;
    2)危害國家安全,泄露國家秘密,顛覆國家政權(quán),破壞國家統(tǒng)一,損害國家榮譽和利益;
    3)侮辱、濫用英烈形象,歪曲、丑化、褻瀆、否定英雄烈士事跡和精神,以侮辱、誹謗或者其他方式侵害英雄烈士的姓名、肖像、名譽、榮譽;
    4)宣揚恐怖主義、極端主義或者煽動實施恐怖活動、極端主義活動;
    5)煽動民族仇恨、民族歧視,破壞民族團結(jié);
    6)破壞國家宗教政策,宣揚邪教和封建迷信;
    7)散布謠言,擾亂社會秩序,破壞社會穩(wěn)定;
    8)宣揚淫穢、色情、賭博、暴力、兇殺、恐怖或者教唆犯罪;
    9)煽動非法集會、結(jié)社、游行、示威、聚眾擾亂社會秩序;
    10)侮辱或者誹謗他人,侵害他人名譽、隱私和其他合法權(quán)益;
    11)通過網(wǎng)絡(luò)以文字、圖片、音視頻等形式,對未成年人實施侮辱、誹謗、威脅或者惡意損害未成年人形象進行網(wǎng)絡(luò)欺凌的;
    12)危害未成年人身心健康的;
    13)含有法律、行政法規(guī)禁止的其他內(nèi)容;


2. 不友善:不尊重用戶及其所貢獻內(nèi)容的信息或行為。主要表現(xiàn)為:
    1)輕蔑:貶低、輕視他人及其勞動成果;
    2)誹謗:捏造、散布虛假事實,損害他人名譽;
    3)嘲諷:以比喻、夸張、侮辱性的手法對他人或其行為進行揭露或描述,以此來激怒他人;
    4)挑釁:以不友好的方式激怒他人,意圖使對方對自己的言論作出回應(yīng),蓄意制造事端;
    5)羞辱:貶低他人的能力、行為、生理或身份特征,讓對方難堪;
    6)謾罵:以不文明的語言對他人進行負面評價;
    7)歧視:煽動人群歧視、地域歧視等,針對他人的民族、種族、宗教、性取向、性別、年齡、地域、生理特征等身份或者歸類的攻擊;
    8)威脅:許諾以不良的后果來迫使他人服從自己的意志;


3. 發(fā)布垃圾廣告信息:以推廣曝光為目的,發(fā)布影響用戶體驗、擾亂本網(wǎng)站秩序的內(nèi)容,或進行相關(guān)行為。主要表現(xiàn)為:
    1)多次發(fā)布包含售賣產(chǎn)品、提供服務(wù)、宣傳推廣內(nèi)容的垃圾廣告。包括但不限于以下幾種形式:
    2)單個帳號多次發(fā)布包含垃圾廣告的內(nèi)容;
    3)多個廣告帳號互相配合發(fā)布、傳播包含垃圾廣告的內(nèi)容;
    4)多次發(fā)布包含欺騙性外鏈的內(nèi)容,如未注明的淘寶客鏈接、跳轉(zhuǎn)網(wǎng)站等,誘騙用戶點擊鏈接
    5)發(fā)布大量包含推廣鏈接、產(chǎn)品、品牌等內(nèi)容獲取搜索引擎中的不正當(dāng)曝光;
    6)購買或出售帳號之間虛假地互動,發(fā)布干擾網(wǎng)站秩序的推廣內(nèi)容及相關(guān)交易。
    7)發(fā)布包含欺騙性的惡意營銷內(nèi)容,如通過偽造經(jīng)歷、冒充他人等方式進行惡意營銷;
    8)使用特殊符號、圖片等方式規(guī)避垃圾廣告內(nèi)容審核的廣告內(nèi)容。


4. 色情低俗信息,主要表現(xiàn)為:
    1)包含自己或他人性經(jīng)驗的細節(jié)描述或露骨的感受描述;
    2)涉及色情段子、兩性笑話的低俗內(nèi)容;
    3)配圖、頭圖中包含庸俗或挑逗性圖片的內(nèi)容;
    4)帶有性暗示、性挑逗等易使人產(chǎn)生性聯(lián)想;
    5)展現(xiàn)血腥、驚悚、殘忍等致人身心不適;
    6)炒作緋聞、丑聞、劣跡等;
    7)宣揚低俗、庸俗、媚俗內(nèi)容。


5. 不實信息,主要表現(xiàn)為:
    1)可能存在事實性錯誤或者造謠等內(nèi)容;
    2)存在事實夸大、偽造虛假經(jīng)歷等誤導(dǎo)他人的內(nèi)容;
    3)偽造身份、冒充他人,通過頭像、用戶名等個人信息暗示自己具有特定身份,或與特定機構(gòu)或個人存在關(guān)聯(lián)。


6. 傳播封建迷信,主要表現(xiàn)為:
    1)找人算命、測字、占卜、解夢、化解厄運、使用迷信方式治病;
    2)求推薦算命看相大師;
    3)針對具體風(fēng)水等問題進行求助或咨詢;
    4)問自己或他人的八字、六爻、星盤、手相、面相、五行缺失,包括通過占卜方法問婚姻、前程、運勢,東西寵物丟了能不能找回、取名改名等;


7. 文章標題黨,主要表現(xiàn)為:
    1)以各種夸張、獵奇、不合常理的表現(xiàn)手法等行為來誘導(dǎo)用戶;
    2)內(nèi)容與標題之間存在嚴重不實或者原意扭曲;
    3)使用夸張標題,內(nèi)容與標題嚴重不符的。


8.「飯圈」亂象行為,主要表現(xiàn)為:
    1)誘導(dǎo)未成年人應(yīng)援集資、高額消費、投票打榜
    2)粉絲互撕謾罵、拉踩引戰(zhàn)、造謠攻擊、人肉搜索、侵犯隱私
    3)鼓動「飯圈」粉絲攀比炫富、奢靡享樂等行為
    4)以號召粉絲、雇用網(wǎng)絡(luò)水軍、「養(yǎng)號」形式刷量控評等行為
    5)通過「蹭熱點」、制造話題等形式干擾輿論,影響傳播秩序


9. 其他危害行為或內(nèi)容,主要表現(xiàn)為:
    1)可能引發(fā)未成年人模仿不安全行為和違反社會公德行為、誘導(dǎo)未成年人不良嗜好影響未成年人身心健康的;
    2)不當(dāng)評述自然災(zāi)害、重大事故等災(zāi)難的;
    3)美化、粉飾侵略戰(zhàn)爭行為的;
    4)法律、行政法規(guī)禁止,或可能對網(wǎng)絡(luò)生態(tài)造成不良影響的其他內(nèi)容。


二、違規(guī)處罰
本網(wǎng)站通過主動發(fā)現(xiàn)和接受用戶舉報兩種方式收集違規(guī)行為信息。所有有意的降低內(nèi)容質(zhì)量、傷害平臺氛圍及欺凌未成年人或危害未成年人身心健康的行為都是不能容忍的。
當(dāng)一個用戶發(fā)布違規(guī)內(nèi)容時,本網(wǎng)站將依據(jù)相關(guān)用戶違規(guī)情節(jié)嚴重程度,對帳號進行禁言 1 天、7 天、15 天直至永久禁言或封停賬號的處罰。當(dāng)涉及欺凌未成年人、危害未成年人身心健康、通過作弊手段注冊、使用帳號,或者濫用多個帳號發(fā)布違規(guī)內(nèi)容時,本網(wǎng)站將加重處罰。


三、申訴
隨著平臺管理經(jīng)驗的不斷豐富,本網(wǎng)站出于維護本網(wǎng)站氛圍和秩序的目的,將不斷完善本公約。
如果本網(wǎng)站用戶對本網(wǎng)站基于本公約規(guī)定做出的處理有異議,可以通過「建議反饋」功能向本網(wǎng)站進行反饋。
(規(guī)則的最終解釋權(quán)歸屬本網(wǎng)站所有)

我知道了
恭喜你~答對了
+5羽毛
下一次認真讀哦
成功推薦給其他人
+ 10羽毛
評論成功且進入審核!審核通過后,您將獲得10羽毛的獎勵。分享本文章給好友閱讀最高再得15羽毛~
(羽毛可至 "羽毛精選" 兌換禮品)
好友微信掃一掃
復(fù)制鏈接